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Explicit codes are often used to simulate the nonlinear dynamics of large-scale

structural systems, even for low frequency response, because the storage and CPU re-

quirements entailed by the repeated factorizations traditionally found in implicit codes

rapidly overwhelm the available computing resources. With the advent of parallel pro-

cessing, this trend is accelerating because explicit schemes are also easier to parallelize

than implicit ones. However, the time step restriction imposed by the Courant stabil-

ity condition on all explicit schemes cannot yet -- and perhaps will never -- be offset

by the speed of parallel hardware. Therefore, it is essential to develop efficient and

robust alternatives to direct methods that are also amenable to massively parallel pro-

cessing because implicit codes using unconditionally stable time-integration algorithms

are computationally more efficient than explicit codes when simulating low-frequency

dynamics. Here we present a domain decomposition method for implicit schemes that

requires significantly less storage than factorization algorithms, that is several times

faster than other popular direct and iterative methods, that can be easily implemented

on both shared and local memory parallel processors, and that is both computation-

ally and communication-wise efficient. The proposed transient domain decomposition
method is an extension of the method of Finite Element Tearing and Interconnecting

(FETI) developed by Farhat and Roux for the solution of static problems. Serial and

parallel performance results on the CRAY Y-MP/8 and the iPSC-860/128 systems are

reported and analyzed for realistic structural dynamics problems. These results estab-

lish the superiority of the FETI method over both the serial/parallel conjugate gradient

algorithm with diagonal scaling and the serial/parallel direct method, and contrast the

computational power of the iPSC-860/128 parallel processor with that of the CRAY

Y-MP/8 system.



[4], Belytschko, Plaskacz, Kennedy and Greenwell [5], and Biffie [6]) because

these methodologies (a) are easier to parallelize than implicit schemes and direct

solvers, and (b) they usually induce short range interprocessor communications

that are relatively inexpensive, while the factorization methods used in most im-

plicit schemes induce long range interprocessor communications that often ruin

the sought-after speed-up. However, the time step restriction imposed by the

Courant stability condition on all explicit schemes cannot yet -- and perhaps will

never -- be offset by the speed of parallel hardware, and many iterative solvers

often fail when applied to systems arising from the analysis of large-scale flexible

structures. Therefore, it is essential to develop efficient and robust alternatives to

direct methods that are also amenable to massively parallel processing, because

unconditionally stable implicit schemes are computationally more efficient than

explicit time-integration methodologies at simulating low-frequency dynamics.

The EBE/PCG algorithm developed by Hughes and his co-workers [1, 2] is such

an alternative which additionally utilizes the structure inherent in finite element

formulations and implementations. Here, we propose another alternative which is

driven by substructuring concepts and which achieves a greater improvement over

the CG algorithm with diagonal scaling than reported in [1] for the EBE/PCG

scheme. However, unlike EBE methods, the proposed methodology requires the

assembly and factorization of substructure level matrices and therefore requires

more storage than the EBE/PCG solution algorithm.

A good balance between direct and iterative solution algorithms is provided

by Domain Decomposition (DD) methods which usually blend both of these so-

lution strategies. A well designed DD method requires less storage than direct

solvers and converges faster than other purely iterative algorithms when applied to

highly ill-conditioned systems (see, for example, the collection of papers compiled

in [7]). Moreover, in their simplest form, DD methods have an explicit character

because they effectively share information only between neighboring subdomains,

which makes them very attractive for parallel processing. The method of Fi-

nite Element Tearing and Interconnecting (FETI) is a DD algorithm based on a

hybrid variational principle that was developed by Farhat and Roux [8] for the

parallel solution of self-adjoint elliptic partial differential equations. It combines

a direct solver for computing the incomplete subdomain displacement fields with

a PCG algorithm for extracting the dual tractions at the subdomain interfaces.

This method was shown to outperform optimized direct solvers on both serial

and coarse-grained multiprocessors such as the CRAY Y-MP/8 system, and to

compare favorably with other DD algorithms on a 32 processor iPSC-2 (Faxhat

and Roux [9]). In this paper, we present an extension of the FETI methodology

to structural dynamics problems. In particular, we construct two subdomain-by-



stress and strain tensors, pS is the mass density, u is the displacement field, f is

the forcing field, and _*,q is a Lagrange multiplier function which represents the

interface tractions that maintain equilibrium between f/° and a neighboring f_q

(interconnecting). The first of the inter-substructure continuity constraints (Eqs.

(4)) can be dualized as:

- =q) dr = 0 (5)
• f-i ,

If the original mesh of the global structure does not contain incompatible ele-

ments, the subdomains SOs'ts=N"t -_ #o=1 are guaranteed to have compatible interfaces

since these subdomains are obtained by partitioning the global mesh into Ns

submeshes. Therefore, we assume in the sequel that discrete Lagrange multipli-

ers are introduced at the subdomain interfaces to enforce the inter-substructure

displacement continuity. The piece-wise continuous approximation of the La-

grange multipliers ,ks,q in Eq. (5) is treated in Farhat and Geradin [10] for static

problems. Using a standard Galerkin procedure where the displacement field is

approximated by suitable shape functions as:

u s = Nu ° (6)

and linearizing the equations of dynamic equilibrium around un+l, Eqs. (3) and

(5) are transformed into the following algebraic system:

MS - ..s (_+t) Trt °_ °(_+t)
/kUn+ 1 + .[k L3.Un+ 1

--S - S (t+x)B AUn+ 1

s=l

s(_) _sr k(k+l)= rn+l -- _ n+l

=0

s=l, ..., Ns

(7)

where the superscript T indicates a transpose, M s and K t° are respectively the
• . s(*+l) s(k)

subdomain mass and tangent stiffness matrices, Au.+ 1 and r.+ 1 are respec-

tively the subdomain vector of nodal displacement increments and the subdo-

main vector of out-of-balance nodal forces, B _ is a boolean matrix that describes

X(k+l) is the vector of Lagrangehow _s is connected to the global interface, and --,,+1

multiplier unknowns at iteration k + 1 and step n + 1. For linear elastostatic

problems, Eqs. (7) above correspond to the discretization of a saddle-point vari-

ational principle whose mathematical and computational properties are analyzed

in Farhat and Roux [8, 9].
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A (k+0 and the momentum incrementdisplacement field increment LXU,+ 1

m (k-I-l) --_--'(k+l)
Vn+ 1 -- /-._ an + 1 .

Here, we select a midpoint rule version of the time-integration algorithm

(A3) and summarize it in order to keep this paper serf-contained. Let Av (k+l)
n-i- 2

denote the momentum increment at iteration k + 1 and at the midpoint between

steps n and n + 1:

= Au(+S) (9)
ta-}- 2 n-l- 2

A s(++t) A s(++t)

The midpoint subdomain increments z.xu,+, x= and zav+½ are integrated as

follows:

•,+.t = -E zx -+_

A s(++a) At . _rs(++_)
V '1"+_ 2 A .+½

(10)

where At is the time step. Substituting Eqs. (10) into the dynamic equations of

subdomain equilibrium (7) written at the midpoint step n + ½ leads to:

Av,(,+_) 2 " u ,('+') (11)
,,+++ - _tM A ,,+_

and

At2 t" s (k+t) At2, s (1) _ BsT_(k+l))
(M + + --_--K )Au++ = ---_--t,r,,+.[.

8 ----"N,I

--s - s (k+l)B _u+½ = 0
s=l

s(i+l) s(k) . s(*+t)

u+_ = u+½+/xu+_

s = 1, ..., Ns

(12)

After Eqs. (12) are repeatedly solved for all nonlinear increments, uS+{ is found

and the time derivative of each subdomain momentum could be obtained via

back-substitution as:

s_=t int

"/"_++ = f,++-lj. - BsT"_-- f. (u:+{,Pc ,0) (131

However, in order to bypass the dynamics of the Lagrange multipliers we implic-

s=N. x(k+])itly invoke the equilibrium condition _ B sr = 0 and directly compute

the momentum increment in assembled form as:

• ,"" """ o) (14)v.+_ = .,,+_ - i _u.,+{,p_,

7
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subdomain displacement fields [13]. Because of this compactness, the eigenval-
8_ N, - 1

ues of the matrix _ B*K t" B *r are well separated and have a higher den-
8=1

sity towards the low end of their spectrum. For a fixed At, we can show that

s=N. ._2 KtOB*(M* + -- )-1B ,r has similar eigen properties. The objectives of this
s=l

section are: (a) to numerically illustrate the spectral properties of the transient

s=N° _t _ .Ktointerface operator _ B*(M* + --i--- )-1B ,r ' and (b) to highlight the impact

of these spectral properties on the convergence rate of the CG algorithm.

Consider the three-dimensional two-subdomain cantilever problem depicted

in FIG. 1. The beam has a square cross section and a 10/1 length/height aspect

ratio. Two finite element meshes are constructed using 8-node brick elements.

The first mesh, M1, contains 2400 internal degrees of freedom (d.o.f.) and 192

interface d.o.f. The second mesh, M2, is finer: it contains 16320 internal d.o.f.

and 672 interface d.o.f.

FIG. 1 A three-dimen_ional cantilever problem

9



The z axis of the bar diagrams depicted in FIG. 2-3 represents the eigenvalues

scaled by the smallest eigenvalue, and the !/ axis the number of eigenvalues per
Nt

interval. For both meshes, F I is shown to have a few large eigenvalues that

are well separated from the small ones. Figure 3 suggests that this separation

amplifies when the mesh size h _ 0. Indeed, one can mathematically prove that
Nt

the large eigenvalues of F z stabilize when the mesh size decreases, while its small
Nt

eigenvalues accumulate towards zero. Essentially, this is because F I involves

the inverses of the pencils (M _, K t° ) and therefore its high modes correspond to

physical modes while its low modes correspond to mesh modes.

The spectral distribution of the interface problem associated with the FETI

methodology has important consequences on the convergence rate of the CG

algorithm. During the first iterations, the conjugate gradient algorithm mostly

captures the eigenvectors associated with the large eigenvalues. Since the high
Nt

numerical modes of F I correspond to the low physical modes of the structure and
_t

since F! has only a few relatively high eigenvalues, the CG algorithm applied to

the solution of Eq. (16) quickly gives a good approximation of the displacement

increments. Intuitively, one can imagine that after the few relatively high modes
Nt

of the interface operator are captured, the "effective" condition number of F_

-- that is the ratio of its largest uncaptured eigenvalue over its smallest one --
Nt

becomes significantly smaller than the original condition number of FI, which

accelerates the convergence of the CG algorithm. A detailed analysis of this

superconvergence behavior of the CG algorithm in the presence of well separated

eigenvalues can be found in the work of van der Sluis and van der Vorst [14].

Nt

The impact of the spectral distribution of the transient interface operator F

on the convergence rate of the CG algorithm is highlighted in TABLE 1 which

reports the number of iterations to achieve convergence for the FETI methodol-

ogy described in this paper and for the classical Schur complement method. The

transient interface operator resulting from the latter DD method (static conden
Nt Nt _t

sation) is denoted here by S z. While both F z and S z are shown to have identical

two-norm condition numbers (n2(Fi) = _2(Sz)), the CG algorithm applied to F t
_t

is shown to converge twice as fast as when applied to S I. This clearly demon

strates that conditioning is not always the only factor governing the convergence

rate of the CG algorithm.

11
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FIG. 4 A four-subdomain bending plate problem

TABLE 2

Four-subdomain bending plate problem

Discretization: N × N where N = -_

Algorithm: CG-FETI

Convergence criterion: IlK t .+lJllr(u_+_l)112"tl- t .+1m2 _< 10_4

h # of d.o.f. # of interfa_:e d.o.f. # of iterations

1__ 605 55 43
10

1 2205 105 54
20

! 8405 205 74
40

1__ 32805 405 75
80

1 129605 805 75
160

13
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3D cantilever problem
Mesh M2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 4'1 43 45 47 49 51 53 55 57 59

Scaled eigenvalue range

_t -1 _t

FIG. 5 Spectral density of L I F z for mesh M2

t--1

By comparing FIG. 3 and FIG. 5, the reader can observe that L I essentially

amplifies the separation between the clusters of small and large eigenvalues of

the interface problem, which accelerates the convergence of the CG algorithm.

Following the reasoning outlined in Section 3, the reader can also conclude from

FIG. 3 and FIG. 5 that after the few large eigenvalues of the interface problem
t-t _t

axe captured, the "effective" condition number of L I F I is much smaller than
_t

that of F I. This "superconvergence" behavior is highlighted in TABLE 3 below

for the three-dimensional two-subdomain cantilever problem.

15



matrix-vector products of sizes equal to the subdomain interfaces. From a me-

chanical viewpoint, solving Eq. (19) corresponds to finding a set of "lumped"

interface forces that can reproduce the imposed jump of the displacement incre-

ments. Therefore, the problem described by F_,q. (20) is indeed an approximate

inverse of the interface problem.

5. Preconditionig with a primal operator

5.1 Sum of the exact inverses

For the sake of clarity and notation simplicity, we first assume that the

mesh partition does not contain cross-points -- that is, points where more than

two subdomains intersect. After the mechanical interpretation of the primal

preconditioner presented below is given in Section 5.2, the treatment of cross-

points becomes straightforward.

Nt--t

A better approximation of F I can be obtained by approximating the inverse

of the sum by the sum of the exact inverses -- that is, by assuming that:

• =N. At2 Ke)-' B'r] -I (21)
['=N'_ B'(M" + TAt2 K'" )-1B'_'I-I _ _ IB'(M" + --4

s----1 s=l

which leads to the following preconditioner:

__, ,=N. At2 Kt.)_IBST]_I (22)
D, = Z [B'(M" + 4

s-_--I

If the subdomain mass and stiffness matrices and the subdomain displacement

field are partitioned as:

M" = Mb bj' Ki_ r K_ b u_

where the subscripts i and b respectively refer to the internal and interface bound-

ary degrees of freedom, the inverse of (M" +-_K t° ) can be written as the solution

of the partitioned matrix equations:

Mii + --'_--ii M_b + _ . Aii Aib I 0

M_: At" u., r "'? r,," A T. A_b 0 I+ ----_'"ib M_b + "-'_XXbb

(23)

17
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Here, p_ denotes the search direction computed during the q-th iteration, and

_ denotes the q-th residual which represents the jump of the displacement in-
crements across the subdomaln interfaces. All computations summarized in Eqs.

(28) can be performed at the subdomain level as follows:

At2 K t° )-1B ,r Pb
P_" = B°(M'+ 4

sq /kt2 s "
_'b = [(Mh + --(gbb)

At2T,.s _T[_$s At2 • 1 At2- • ---,'

(29)

The first of Eqs. (29) can be re-formulated as a problem with Neumann boundary

conditions (indicated between braces { }):

The solution of this problem _' represents the trace on the interface boundary

of _/° of the displacement field resulting from prescribing the interface traction

forces pg'.

The second of Eqs. (29) can be re-formulated as a problem with Dirichlet

boundary conditions (indicated between braces { }):

M,"i + -T---, M_b + -- " = (31)

and which can be solved in two steps:

_olve

Evaluate

/kt2 s s_ /kt2 s s _

+ = - (M,'b+
s' At2 s T s' /kt_ s" s'

(32)

Therefore, the preconditioning step reformulated in Eq. (31) corresponds to find-

ing in each subdomain £/_ the traction forces that are needed to prescribe the

interface boundary displacement increment jump _.

The mechanical interpretation of the CG algorithm with the primal precon-
_t

ditioner D I is straightforward. Within each iteration, a Neumann problem is first

19



a polynomial function of the ratio between consecutive eigenvalues.

The loss of orthogonality of the search directions during the solution of the

interface problem (16) has a disastrous consequence on the convergence rate of

the PCG algorithm. To remedy this problem, we introduce a reorthogonalization

procedure within the PCG algorithm which however, in order to determine the

new direction vector, entails at each iteration q the following additional burden:
_t

(a) the storage of the direction vector pq and the product Fipq.
Nt _t

(b) the evaluation of q dot products of the form rT[F1p q]where [F,pq] is readily

available and 1 < j < q, and of an nl × j matrix-vector product where nl is

the number of interface unknowns.

Clearly, such a reorthogonalization procedure is not feasible if introduced

during the solution via the PCG algorithm of a global finite element problem, as

it would require unreasonable amounts of memory and CPU. However, it is quite

affordable within the context of a domain decomposition algorithm as it apphes

only to the interface problem. In particular, the reader should note that the

additional computational costs outlined in (b) are small compared to the cost of

the pair of forward and backward substitutions that are required at each iteration
Nt

q of the PCG algorithm in order to evaluate the product FiP q-

The efficiency of the reorthogonalization procedure discussed above is high-

lighted in TABLE 4 for the four-subdomain bending plate problem introduced in

Section 3.

TABLE 4

Four-subdomain bending plate problem

Algorithm: PCG-FETI

Preconditioner: L I

Convergence criterion: IIK'"'(_) " Au(t+l) r'u(t) '"tu,_+tJ ._t - _ .+lJtt_ < 10-3

Iir(u_+_ )112

Multiprocessor: iPSC-860 (4 processors)

h # of iterations

(without reorth.)

# of iterations CPU

(with reorth.) (without reorth.)

CPU

(with reorth.)

1
2O
1

4O

42

66

22 5.5 s. 3.7 s.

24 33.2 s. 16.5 s.

21
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From (16) and (35), it is clear that the gradient of the interface problem (16)

is indeed the jump in the displacement increments at the subdomain interfaces.

Therefore, the norm of the residual of the interface problem II- GXCk+I)'+ HII

gives the order of magnitude of the error in Aun+ ½ and not the order of magnitude

of the global residual R:'(u_,) Au_:; ) "tu (t) _ where _"" (k)-- "\ n+l]' 1%. {Un+l) = M +

-_--3-_K t. Moreover, since the condition number of _t varies as O(1/h 2) whUe the
NI

condition number of F t varies as O(1/h), the convergence criterion:

I[- GA(_+I)' + HI[ < e ]1- GA(_+a)° + HII (36)

does not guarantee that:

-, ck) AuCk+l), <k) -, {k) AuCk+a)° r(u<._x)ll (37)IlK (u.+_) .+½ - r(n.+l)ll _< _ IlK (u.+l) .++ -

We have observed that for most structural problems, the norm of the relative

global residual (37) is typically 102 to 103 larger than the norm of the relative

interface residual (36), which clearly indicates that the convergence of the FETI

methodology should be based on the global criterion (37).

Unfortunately, evaluating (37) at every PCG iteration q requires perform-

ing a global matrix-vector multiply in order to compute the global residual

_t, (6) Au(k+l)q (k)
ku,+x) .+½ - r(u,+_). This would double both the computational

and communication costs of a PCG iteration. Therefore, we had to develop an

estimator for the global residual that is accurate and computationally economical.

Using Eq. (12) and the partitioning introduced in Section 5.1, the restriction

of the global residual to every subdomain fl" can be written as:

K t (u:_,x) ,, ,,,+l,q , .,,-),

_u+{ -r_,u.+l)= (M,b+-_K;_) `^-*(*+')q,`-:u+½ bb AU"';_'):?:!,::)

where A- ,(k+,)q _ A- ,(k+t)q is the jump in the displacement increments at the
"_Un+l bb L-_Un+{ bb

r_a'±Lxt2r_ s ' :_+ -subdomain boundary interface. Clearly, the reaction forces k,,Xibq----_-XXib] (mu l) q
bb

/kug: +_)q ) are zero except on those degrees of freedom that are connected to the
n -t" -5 b b

s At 2 s [muS(_+:) q
interface ones. Moreover, equilibrium suggests that II(M;s+-q-K,s) _ -+_ bb--

A s<'+t)q s At 2 s [A, s('+t)q --AuSn<;+'):u..=,: bb)lIand [I(Mt, b+--T-Kb_) _ %,+{ bb b)ll areof the same order

23



The discrepancy between the interface and global residuals and the accuracy

of the proposed global residual estimator are demonstrated in FIG. 6 which re-

ports the logarithm of the Euclidean norm of the various residuals for the four

subdomain bending plate problem with h = 1/40 (Section 3).

Four-subdomain bending plate problem
h=1/40

10 20 30 40 50 GO 70 80

Iterationnumber

Residuals(Log(2-norm ))

o- .... interface

x .......... esgfr_'lu0

FIG. 6 Accuracy of the global residual estimator

ZIg. Setting the tolerance for the PCG algorithm

k and k )o_Let d,+l, u,+l, (u,+ 1 denote respectively the exact sohltion of the

nonlinear problem (1) at time step n + 1, the exact solution of the lit_earized

problem at the k-th nonlinear iteration of time step n + 1, and the PCG ,_olution

of the linearized problem at the k-th nonlinear iteration of time step yz _ 1. Our

stopping criterion for the PCG algorithm is:

Nt (k) . (k+l)q (k) -t (k) _ (k+l) °
IlK (u.+,) Au+_ - r(u.+l)ll _< _ IlK (u.+l) zau++

where q denotes the PCG iteration number. It follows that:

kq-1 oo . k+ltl kII(u.+l) - u.+_lt <_ _ Ilu.+i -d.+,ll

-- r(- (k)u,,_ ,)11 (44)

(45)

25



FIG. 7 Finite element discretization of a space antenna connector

(kom a yi er mesh)

8.¢_ Reference serial performance results

First, performance results are reported for the direct method (LDL T factor-

ization) and the CG Mgorithm with diagonal scaling (Jacobi-PCG) applied to the

un-decomposed problem (TABLE 5). These results will later serve as reference

seriM performance results. Memory consumption is measured in millions of 64

bit words (MW). MFLOPS (Million FLoating-point OPerations per Second) are

reported in order to distinguish and independently assess the numerical and im-

plementational performances. A sparse data structure is used for the Jacobi-PCG

algorithm.

27
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Space antenna connector

67704 equations

4 8 16 32 64

Number of subdomain$

Interlace size

# o! eqtmtions

FIG. 8 Growth of _he interface problem

TABLE 6

Space antenna connector- FETI(I,71) serial performance results

67704 equations - At = T_a = 0.0123s.
15

Nt-1

Preconditioner: L I

Convergence criterion:

-',u(_) , _u(t+l) r,u (t) ,,,
IlK , ..l.lJ ,"1-_ - _ "-I-_j"2

iir(u(_,)ll= -< 10 -4

CRAY Y-MP (single processor)

Ns memory CPU MFLOPS # of itr. CPU/itr. CPU MFLOPS CPU
FAC FAC PCG PCG PCG TOT

4 18 MW 19.0 s. 165 159 0.43 s. 68.4 s. 130 87.4 s.
8 16 MW 13.6 s. 150 200 0.39 s. 78.0 s. 110 91.6 s.
16 12 MW 9.6 s. 130 267 0.36 s. 96.1 s. 105 105.7 s.
32 10 MW 6.7 s. 105 456 0.34 s. 155.0 s. 90 161.7 s.
64 9 MW 5.0 s. 85 717 0.33 s. 236.6 s. 75 241.6 s.

29



Jacobi-PCG global algorithms. In the best case (4 subdomains), the FETI

method with the lumping preconditioner is three times faster than the global

direct solver and four times faster than the global Jacobi-PCG algorithm.

The primal preconditioner reduces the number of iterations performed by the

lumping preconditioner by a factor of 1.4 in the [4-16] subdomains range, and

by a factor of 1.2 in the [32-64] subdomains range. However, a CG iteration

with the primal preconditioner is 1.8 times more expensive than a CG itera-

tion with the lumping preconditioner, so that the lumping preconditioner is

overall more efficient.

The performance of both FETI algorithms deteriorates when the number

of subdomain is increased (FIG. 9). We refer to this phenomenon as the

numerical H non-scalability of the FETI methodology, Clearly, the super-

convergence behavior discussed in Section 3 seems to disappear in the case

of fine mesh partitions and the number of iterations seems to grow linearly

with the interface size (FIG. 8). However, the reader should note that for

the above structural dynamics problem, increasing the number of subdo-

mains from 4 to 64 increases the number of iterations by a factor of 4.5, but

increases the CPU time by a factor of 2.7 only (TABLE 6). This is because

the cost of a PCG iteration decreases with the size of a subdomain. More-

over, since the vector speed drops from 130 MFLOPS in the 4 subdomain

case to 75 MFLOPS in the 64 subdomain case, increasing the number of

subdomains from 4 to 64 actually increases the operation count of the FETI

method by a factor of 2.7 x 75/130 = 1.6 only.

31
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a tree communication algorithm [25] is used for broadcasting at each factorized, ion

step the pivotal column to all of the processors, and a node clustered wrap map-

ping algorithm rather than a single degree of freedom wrap mapping algorit, hm

is used. The distributed data structure described in [24] is augmented with a

pointer array that identifies the last active column of each structural equation.

On the CRAY Y-MP/8 system, the forward and backward substitutions are se-

rialized. On the iPSC-860/128 multiprocessor, only the backward substitution

is serialized. These serializations are performed because of well-known mat,l)i ag,

synchronization, and communication bottlenecks in the parallel solution of skyline

triangular systems [23, 24].

The performances of the above parallel solvers are assessed with the mmlin-

ear transient analysis of two structural systems: (a) the space antenna conm.ctor

described in Section 8.1, and (b) a stiffened wing panel from the V22 tiltrotor

aircraft (based on the panel described in Davis, Krishnamurthy, Stroud and _4¢.-

Cleary [26]) (FIG. 10). The finite element model depicted in FIG. 10 co,,: ',ins

9486 nodes, 9136 4-node shell elements with 6 d.o.f, per node, and a I,_ ,,.! of

54216 d.o.f.

FIG. 10 Finite element discretization of a _tiffened wing panel
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TABLE 9

Space antenna connector - performance renulta on the GRAY Y-MP/8 _.t_tem

67704 equations - At = _ -- 0.0123s.

Nt-I

FETI preeonditioner: L I

i,_ttH(')_ ^u(_+t)_rtu (_)_II.
'== _--.+1' -- ,_tl • .+1 .... < 10-4

Convergence criterion: IIr(u_+)l) II2 -

Np Ns # of itr. # of itr. CPU CPU CPU
FETI Jacobi-PCG FETI Jaz_obi-PCG direct

1 1 -- 3320 -- 345.6 s. 253.0 s.

4 4 159 3320 24.3 s. 93.9 s. 70.3 s.

8 8 200 3320 13.7 s. 50.2 s. 39.5 s.

TABLE 10

Stiffened wing panel - performance result_ on the GRAY Y-MP/8 system

54216 equations - At = _ ----0.00179s.

FETI preconditioner: L x

_t It,
(h) (_+1) ( )

IlK (u.+1) zxu+1 -r(u.+1)ll2
Convergence criterion: [Ir(u_+)Olb _ 10-4

Np Ns # of itr. # of itr. CPU CPU CPU
FETI Jacobi-PCG FETI Jacobi-PCG direct

1 1 -- 4775 -- 418.6 s. 259.7 s.

4 4 300 4775 36.5 s. 114.0 s. 72.1 s.

8 8 396 4775 20.9 s. 60.8 s. 40.6 s.
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All algorithms are reported to achieve good speed-ups. This is essentially because

the CRAY Y-MP/8 system has a shared memory and a relatively small number

of processors. For the antenna connector problem, the FETI method is shown to

outperform the direct solver by a factor of three and the Jacobi-PCG algorithm

by a factor of four. The wing panel structure apparently generates a stiffer

problem: the FETI method converges with a larger number of iterations than for

the connector problem, but still outperforms the direct solver by a factor of two

and the Jacobi-PCG algorithm by a factor of three.

9._. Performance resulta on the iPSC-860/1,_8 multiprocessor

The performance results measured on an iPSC-860/128 Touchstone Gamma mul-

tiprocessor are summarized in TABLE 11 for the antenna connector problem and

in TABLE 12 for the wing panel problem. A minimum of 32 and 64 processors axe

needed to accommodate the memory requirements of the FETI method and the

direct solver, respectively. Our current implementation of the FETI algorithm on

on this parallel processor allows only one processor per subdomain. Therefore,

it is important to note that the FETI methodology is benchmarked here in the

worst conditions, given that its intrinsic performance deteriorates in the presence

of large numbers of subdomains (Section 8.3).

TABLE 11

Space antenna connector - performance results on the iPSC-860/I_8 system

67704 equations - At = T_T_a= 0.0123s.15

Nt -1

FETI preconditioner: L 1

_' (_) (_+t)_ (_)
HK (u+_) _u.__ t r(u.+,)ll2 < 10_4

Convergence criterion:
IIr(u_,)ll2

Np N, # of itr. # of itr. CPU CPU CPU
FETI Jacobi-PCG FETI Jacobi-PCG direct

32 32 456 3320 144.0 s. 229.4 s. --

64 64 717 3320 144.1 s. 144.8 s. 462.6 s.
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TABLE 13

Space antenna connector - compute v.s. 8end v.8. receive on _he iPSC-860/1_8 system

algorithm Np compute send receive dot product total CPU time

Nt--1

FETI (LI ) 64 91.1 s. 1.0 s. 9.0 s. 43.0 s. 144.1 s.
direct (factor) 64 54.4 s. 25.4 s. 312.0 s. -- 728.1 s.

direct (forward) 64 1.4 s. 0.1 s. 14.3 s. -- 21.5 s.

direct (backward) 64 0.4 s. 1.3 s. 53.3 s. -- 193.7 s.
direct (total) 64 56.2 s. 26.8 s. 379.6 s. -- 462.6 s.

Clearly, the elapsed CPU time reported for the parallel direct solver is essentially

spent in synchronization and interprocessor communication. On the other hand,

the FETI method is shown to be communication efficient. The dot products

performed during the solution of the interface problem are timed separately be-

cause they are implemented via calls to the iNTEL system routine gdsum. We

could not evaluate the repartition of these timings between compute, send and

receive. If we can assume that they are equally distributed between computation

and communication, then we can conclude that only 21.8% of the total CPU

time reported for the FETI method is spent in synchronization interprocessor

communication.

The performance results summarized in TABLES 9-13 also demonstrate that

the iPSC-860/128 Touchstone Gamma multiprocessor cannot compete with the

CRAY Y-MP/8 system as far as direct solvers are concerned. However, for

explicit-like computations such as those characterizing the FETI and Jacobi-PCG

algorithms, 32 processors of the iPSC-860/128 system are shown to outperform

one CRAY Y-MP processor.

10. Circumventing the numerical H non-scalability

The H non-scalability property characterizing the FETI methodology and

discussed in Section 8 requires keeping the number of subdomains relatively small

in order to obtain the best possible performance. However, increasing the num-

ber of subdomains while keeping the mesh size constant seems a priori attractive

because: (a) it reduces the cost of the local problems, and (b) it also reduces the

cost per iteration of the interface problem. Nevertheless, the results reported in

TABLE 6 clearly indicate that refining beyond a certain number of subdomains

the mesh partition does not significantly reduce any further the computational

costs of neither the subdomain nor the interface problems. This can be explained

by the fact that when the number of subdomains is increased, thc subdomain
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11. Closure

A memory efficient domain decomposition (DD) method for implicit tran-

sient dynamics has been presented. It is based on the concept of Finite Element

Tearing and Interconnecting (FETI) developed by Farhat and Roux [8]. Two

subdomain-by-subdomaln preconditioners with direct mechanical interpretations

have been formulated. The first preconditioner, called here a lumping precondi-

tioner, is constructed as the sum of the projections on the subdomain interfaces

of the inverses of the subdomain transient operators. The second preconditioner,

called here a primal preconditioner, is constructed as the sum of the exact inverses

of the subdomain transient operators. When preconditioned with the lumping op-

erator, the interface problem behaves as if its condition number is independent

of the mesh size. When preconditioned with the primal preconditioner, the inter-

face problem has a condition number that is weakly dependent on the mesh size.

Therefore, from a mathematical viewpoint, the primal preconditioner is optimal.

However, the interface preconditioner is cheaper and computationally more effi-

cient. For coarse mesh partitions, we have shown that the proposed FETI method

can outperform on the CRAY Y-MP/8 multiprocessor the parallel direct solver

and the parallel conjugate gradient algorithm with diagonal scaling by factors of

3 and 4, respectively. For fine mesh partitions, say more than 32 subdomains,

the performance of the FETI algorithm degrades -- and this is the case for most

DD methods. Therefore, when working with a massively parallel processor, we

recommend to keep the number of subdomains as small as possible and allocate

more than one processor per subdomaln. However, even in the worst case of one

processor per subdomain, the FETI method still outperforms the parallel direct

solver on the iPSC-860/128 system because of its low communication costs. Fi-

nally, the results we have reported for two realistic structural dynamics problems

indicate that 32 processors of an iPSC-860 Gamma system can outperform a

CRAY Y-MP processor.
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